翻訳と辞書
Words near each other
・ Kalnowiec
・ Kalná nad Hronom
・ Kalná Roztoka
・ KALO
・ Kalo
・ Kalo Chorio
・ Kalo Chorio (Çamlıköy)
・ Kalo Chorio (Çamlıköy) train station
・ Kalmani
・ Kalmanja village
・ Kalmanjan
・ Kalmanje Jagannatha Shetty
・ Kalmansky District
・ Kalmanson combinatorial conditions
・ Kalmanto
Kalman–Yakubovich–Popov lemma
・ Kalmar
・ Kalmar (disambiguation)
・ Kalmar AIK Fotboll
・ Kalmar Airport
・ Kalmar and Ruby
・ Kalmar BTK
・ Kalmar Castle
・ Kalmar Cathedral
・ Kalmar County
・ Kalmar FF
・ Kalmar Municipality
・ Kalmar Nation, Lund
・ Kalmar nation, Uppsala
・ Kalmar Nyckel


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kalman–Yakubovich–Popov lemma : ウィキペディア英語版
Kalman–Yakubovich–Popov lemma
The Kalman–Yakubovich–Popov lemma is a result in system analysis and control theory which states: Given a number \gamma > 0, two n-vectors B, C and an n x n Hurwitz matrix A, if the pair (A,B) is completely controllable, then a symmetric matrix P and a vector Q satisfying
:A^T P + P A = -Q Q^T\,
: P B-C = \sqrtQ\,
exist if and only if
:
\gamma+2 Re((j\omega I-A)^B )\ge 0

Moreover, the set \ is the unobservable subspace for the pair (A,B).
The lemma can be seen as a generalization of the Lyapunov equation in stability theory. It establishes a relation between a linear matrix inequality involving the state space constructs A, B, C and a condition in the frequency domain.
It was derived in 1962 by Rudolf E. Kalman, who brought together results by Vladimir Andreevich Yakubovich and Vasile Mihai Popov.
==Multivariable Kalman–Yakubovich–Popov lemma==
Given A \in \R^, B \in \R^, M = M^T \in \R^ with \det(j\omega I - A) \ne 0 for all \omega \in \R and (A, B) controllable, the following are equivalent:

  1. for all \omega \in \R \cup \
    : \left((j\omega I - A)^B \\ I \end\right )^
    * M \left((j\omega I - A)^B \\ I \end\right ) \le 0

  2. there exists a matrix P \in \R^ such that P = P^T and
    :M + \left(A^T P + PA & PB \\ B^T P & 0 \end\right ) \le 0.


The corresponding equivalence for strict inequalities holds even if (A, B) is not controllable.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kalman–Yakubovich–Popov lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.